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Thermal Energy Storage (TES) using Thermal Batteries
TES was for CSP -- but now a range of applications foresee use of TES 

Spatial and Temporal shifted use of energy -- 270 K to 1,000K
Sensible heat, Latent heat, Thermo-chemical TES

Use Inexpensive, Widely available Well characterized Materials for TES
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Project Objectives – Flexible Coal Plant Operation with TES
• TES Thermal Battery Concept and Related Challenges:

• Coal power plants have been base load units
• With TES, fossil plants could be flexible & deliver power to meet today’s and 

future grid challenges
• Cementitious Materials for TES:

• Cementitious materials - Inexpensive, Well characterized but poor conductors
• Thermosyphons have good ‘conductivity’ – improve energy & power transfer.
• Integrate system with plant operating conditions – for better plant response.

• Design Goals:
• Operating temperature up to 400ºC
• Round-trip efficiency ~ 90%
• Cost < $25/kWh(th)
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Overall Project objectives:

• Engineer concrete matrix for improved thermal/mechanical 
properties for TES concept at rated temperature.

• Develop and adapt thermosyphon technology into the TES in 
Cementitious media

• Engineer and optimize heat transfer in concrete and to fluids.
• Integration of the TES concept with a coal-fired power plant, 

including thermal cyclic response.
• Perform techno-economic analysis of the TCM-TES system.

Project Objectives – Flexible Coal Plant Operation with TES
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Lehigh Thermal Battery Cells (Lehigh TBC)
• Lehigh Thermal Battery Cell 

(TBC) is a device enabling TES 
• Lehigh TBC houses and 

encloses  storage media and 
transport phenomenon  

• In one design, the Lehigh TBC 
encloses  concrete and 
thermosyphons  

• Provide for user/plant fluid flow 
to/from TBC for  TES

• Designs based on TES Temp., 
operating pressure, energy 
storage (MWh), and power 
(MW).

Higher pressure Lower pressure
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Thermal Reactions of Chemical Compounds in Hydrated Concrete

• Free surface water removal before 
110℃

• CSH gel (CaO‧SiO2‧H2O) 
progressively dehydrate from 110℃ 
to 400℃

• Calcium Hydroxide (Ca(OH)2) 
decomposed from 450℃ to 500℃

Limiting the temperatures at 
which concrete can be 

effectively used for TES
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Thermal Stress Behavior of Concretes for TES
• Thermal demands result in varied stress distributions in TES during charging and discharging
• The Lehigh Concrete TES System is designed to minimize plastic response during operation

Charge

Discharge

Discharge

Charge
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Thermal Conductivity and Specific Heats of Concretes

Specific Heat of Concretes Developed are 1.4 to 1.6 here
vs. NEST (1 to 1.2) and DLR (0.9 to 1.0) kJ/kg-K

Thermal conductivity 1.88 W/m-K is about the same
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Energy Into/Out of – Charging and Discharging of Concrete

§ Sensible Heat Storage and Retrieval as a function of k, Delta T, Mass, Cp, ID, OD
§ Capacity kJ à mass and Cp, Delta T
§ Large Volumes à Large Capacity à May never reach desired Temperatures
§ Rate of Energy ~ Power à Characteristic Distance and k
§ More economical larger Concrete modules will be slower in response for in/out.  
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Energy Transport in Concrete – Effect of Multiple Pipes

• Effect of Multiple Thermosyphons 
to Distribute Energy

• More Thermosyphons in effect 
Decrease the Characteristic length 
for Heat Transfer in Concrete 

• Comparison with NEST work
• NEST used 4 Steam in Pipes inside 

Concrete
• Lehigh TBC use 7 Thermosyphons 

to Distribute Energy in Concrete
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Thermosyphon Flooding Limit Behavior
Establish the heat transfer limits of the 1” 
Thermosyphon
• Heated  with Electrical Cartridge Heaters -- Aluminum 

heater block (bottom)
• Aluminum Cooling block (top) with Air Flow

12

Power 
Rating for 
Energy 
Transported 
for 1” TS

Q = 1,060 W



DOE Project Update (DE-FE0031755) 13

Hybrid Thermosyphon

Hybrid thermosyphon  -- Used for 
Charging and Discharging the TBC

• Requires fewer thermosyphons
• Enhance thermal performance

Air 
cooling

Energy 
In

Energy 
Out
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Hybrid Thermosyphon Performance – Discharge Mode

Power Out: ~1260W

6’ length
Power Out
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Thermosyphon - Concrete TES Charging with Electrical Energy
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Thermosyphon - Concrete TES Charging with Electrical Energy
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Energy Input to/from Lehigh TBC to/from Coal Power Plant
Charging - Energy into TES - Options for a 580 MWe Unit
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Energy Input to/from Lehigh TBC to/from Coal Power Plant

Potential TES Charge Option
• Before TES: Superheated vapor at 403 C, 1,071 psia, 

extracted from high pressure turbine stage 1 (T-
HP1).

• After TES: Steam at 286 C and 1,021 psia and 10 % 
quality is mixed with superheated steam at 342 C and 
711 psia from high-pressure turbine stage 2 (T-HP2) 
and sent to the cold reheater. 

• TES power input = 16.67 MW(th).

• Charging will take place at 16.67 MW(th) for 6 
hours.  Total energy stored is 100 MW(th)h.

• Charging process will incur in an increment in total 
coal mass flow to maintain cold reheat setpoint.  

• Steam mass flow through TES  is 76,078 lb/h which 
represents 2 % of the total mass flow extraction of 
the T-HP1 and 3 % of the mass flow extraction of the 
T-HP2.
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Potential TES Discharge Option
• Before TES: Steam at 266 C, 746 psia and 10 % quality 

extracted from feed water heater No. 7 (FWH7) .

• After TES: Superheated vapor at 400 C and 711 psia (after 
TES) is mixed with superheated steam at 342 C and 711 psia 
from high-pressure turbine stage 2 (T-HP2) and sent to the 
reheater and sent to the cold reheat.

• Discharging cycle starts with 40 MWth and the power is 
reduced by 10 MWth linearly for 4 hours.  Total discharged 
energy is 100 MWhth.

• Power output is increased from 580 MWe to 592 MWe during 
the first hour. 

• Steam mass flow through TES  is 169,655 lb/h which represents 
60 % of the total mass flow leaving the FWH7 and 6 % of the 
mass flow from T-HP2.

• The boiler is running at 100 % of steam production (3,520,088 
lb/h) and the coal mass flow is reduced from 388,445 lb/h to 
387,491 lb/h due to the temperature increase in cold reheat.

Energy Input to/from Lehigh TBC to/from Coal Power Plant
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Summary – Lehigh Thermal Battery Cells (TBC) Design

qThermosyphon design for Lehigh TBC – Performance tests for 
Hybrid thermosyphon. 

qChoice of Concrete and Property determination for use in 
Lehigh TBC – Better TES performance than other data 
reported in the literature.

qNumerical modeling – COMSOL and FLUENT  - Design of 
concrete modules for Lehigh TBC. 

qThermal tests for Concrete + Thermosyphon to prove 
charging of a Lehigh TBC.

qASPEN Analysis for potential Charging and Discharging of 
Lehigh TBC for a Coal Power Plant.
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